summaryrefslogtreecommitdiff
path: root/mm/vma_exec.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/vma_exec.c')
-rw-r--r--mm/vma_exec.c161
1 files changed, 161 insertions, 0 deletions
diff --git a/mm/vma_exec.c b/mm/vma_exec.c
new file mode 100644
index 000000000000..2dffb02ed6a2
--- /dev/null
+++ b/mm/vma_exec.c
@@ -0,0 +1,161 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+/*
+ * Functions explicitly implemented for exec functionality which however are
+ * explicitly VMA-only logic.
+ */
+
+#include "vma_internal.h"
+#include "vma.h"
+
+/*
+ * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between
+ * this VMA and its relocated range, which will now reside at [vma->vm_start -
+ * shift, vma->vm_end - shift).
+ *
+ * This function is almost certainly NOT what you want for anything other than
+ * early executable temporary stack relocation.
+ */
+int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift)
+{
+ /*
+ * The process proceeds as follows:
+ *
+ * 1) Use shift to calculate the new vma endpoints.
+ * 2) Extend vma to cover both the old and new ranges. This ensures the
+ * arguments passed to subsequent functions are consistent.
+ * 3) Move vma's page tables to the new range.
+ * 4) Free up any cleared pgd range.
+ * 5) Shrink the vma to cover only the new range.
+ */
+
+ struct mm_struct *mm = vma->vm_mm;
+ unsigned long old_start = vma->vm_start;
+ unsigned long old_end = vma->vm_end;
+ unsigned long length = old_end - old_start;
+ unsigned long new_start = old_start - shift;
+ unsigned long new_end = old_end - shift;
+ VMA_ITERATOR(vmi, mm, new_start);
+ VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff);
+ struct vm_area_struct *next;
+ struct mmu_gather tlb;
+ PAGETABLE_MOVE(pmc, vma, vma, old_start, new_start, length);
+
+ BUG_ON(new_start > new_end);
+
+ /*
+ * ensure there are no vmas between where we want to go
+ * and where we are
+ */
+ if (vma != vma_next(&vmi))
+ return -EFAULT;
+
+ vma_iter_prev_range(&vmi);
+ /*
+ * cover the whole range: [new_start, old_end)
+ */
+ vmg.middle = vma;
+ if (vma_expand(&vmg))
+ return -ENOMEM;
+
+ /*
+ * move the page tables downwards, on failure we rely on
+ * process cleanup to remove whatever mess we made.
+ */
+ pmc.for_stack = true;
+ if (length != move_page_tables(&pmc))
+ return -ENOMEM;
+
+ tlb_gather_mmu(&tlb, mm);
+ next = vma_next(&vmi);
+ if (new_end > old_start) {
+ /*
+ * when the old and new regions overlap clear from new_end.
+ */
+ free_pgd_range(&tlb, new_end, old_end, new_end,
+ next ? next->vm_start : USER_PGTABLES_CEILING);
+ } else {
+ /*
+ * otherwise, clean from old_start; this is done to not touch
+ * the address space in [new_end, old_start) some architectures
+ * have constraints on va-space that make this illegal (IA64) -
+ * for the others its just a little faster.
+ */
+ free_pgd_range(&tlb, old_start, old_end, new_end,
+ next ? next->vm_start : USER_PGTABLES_CEILING);
+ }
+ tlb_finish_mmu(&tlb);
+
+ vma_prev(&vmi);
+ /* Shrink the vma to just the new range */
+ return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
+}
+
+/*
+ * Establish the stack VMA in an execve'd process, located temporarily at the
+ * maximum stack address provided by the architecture.
+ *
+ * We later relocate this downwards in relocate_vma_down().
+ *
+ * This function is almost certainly NOT what you want for anything other than
+ * early executable initialisation.
+ *
+ * On success, returns 0 and sets *vmap to the stack VMA and *top_mem_p to the
+ * maximum addressable location in the stack (that is capable of storing a
+ * system word of data).
+ */
+int create_init_stack_vma(struct mm_struct *mm, struct vm_area_struct **vmap,
+ unsigned long *top_mem_p)
+{
+ int err;
+ struct vm_area_struct *vma = vm_area_alloc(mm);
+
+ if (!vma)
+ return -ENOMEM;
+
+ vma_set_anonymous(vma);
+
+ if (mmap_write_lock_killable(mm)) {
+ err = -EINTR;
+ goto err_free;
+ }
+
+ /*
+ * Need to be called with mmap write lock
+ * held, to avoid race with ksmd.
+ */
+ err = ksm_execve(mm);
+ if (err)
+ goto err_ksm;
+
+ /*
+ * Place the stack at the largest stack address the architecture
+ * supports. Later, we'll move this to an appropriate place. We don't
+ * use STACK_TOP because that can depend on attributes which aren't
+ * configured yet.
+ */
+ BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
+ vma->vm_end = STACK_TOP_MAX;
+ vma->vm_start = vma->vm_end - PAGE_SIZE;
+ vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
+ vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
+
+ err = insert_vm_struct(mm, vma);
+ if (err)
+ goto err;
+
+ mm->stack_vm = mm->total_vm = 1;
+ mmap_write_unlock(mm);
+ *vmap = vma;
+ *top_mem_p = vma->vm_end - sizeof(void *);
+ return 0;
+
+err:
+ ksm_exit(mm);
+err_ksm:
+ mmap_write_unlock(mm);
+err_free:
+ *vmap = NULL;
+ vm_area_free(vma);
+ return err;
+}