Age | Commit message (Collapse) | Author |
|
Don't use btrfs_set_item_key_safe() to modify the keys in the RAID
stripe-tree, as this can lead to corruption of the tree, which is caught
by the checks in btrfs_set_item_key_safe():
BTRFS info (device nvme1n1): leaf 49168384 gen 15 total ptrs 194 free space 8329 owner 12
BTRFS info (device nvme1n1): refs 2 lock_owner 1030 current 1030
[ snip ]
item 105 key (354549760 230 20480) itemoff 14587 itemsize 16
stride 0 devid 5 physical 67502080
item 106 key (354631680 230 4096) itemoff 14571 itemsize 16
stride 0 devid 1 physical 88559616
item 107 key (354631680 230 32768) itemoff 14555 itemsize 16
stride 0 devid 1 physical 88555520
item 108 key (354717696 230 28672) itemoff 14539 itemsize 16
stride 0 devid 2 physical 67604480
[ snip ]
BTRFS critical (device nvme1n1): slot 106 key (354631680 230 32768) new key (354635776 230 4096)
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.c:2602!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 1 UID: 0 PID: 1055 Comm: fsstress Not tainted 6.13.0-rc1+ #1464
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014
RIP: 0010:btrfs_set_item_key_safe+0xf7/0x270
Code: <snip>
RSP: 0018:ffffc90001337ab0 EFLAGS: 00010287
RAX: 0000000000000000 RBX: ffff8881115fd000 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000001 RDI: 00000000ffffffff
RBP: ffff888110ed6f50 R08: 00000000ffffefff R09: ffffffff8244c500
R10: 00000000ffffefff R11: 00000000ffffffff R12: ffff888100586000
R13: 00000000000000c9 R14: ffffc90001337b1f R15: ffff888110f23b58
FS: 00007f7d75c72740(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa811652c60 CR3: 0000000111398001 CR4: 0000000000370eb0
Call Trace:
<TASK>
? __die_body.cold+0x14/0x1a
? die+0x2e/0x50
? do_trap+0xca/0x110
? do_error_trap+0x65/0x80
? btrfs_set_item_key_safe+0xf7/0x270
? exc_invalid_op+0x50/0x70
? btrfs_set_item_key_safe+0xf7/0x270
? asm_exc_invalid_op+0x1a/0x20
? btrfs_set_item_key_safe+0xf7/0x270
btrfs_partially_delete_raid_extent+0xc4/0xe0
btrfs_delete_raid_extent+0x227/0x240
__btrfs_free_extent.isra.0+0x57f/0x9c0
? exc_coproc_segment_overrun+0x40/0x40
__btrfs_run_delayed_refs+0x2fa/0xe80
btrfs_run_delayed_refs+0x81/0xe0
btrfs_commit_transaction+0x2dd/0xbe0
? preempt_count_add+0x52/0xb0
btrfs_sync_file+0x375/0x4c0
do_fsync+0x39/0x70
__x64_sys_fsync+0x13/0x20
do_syscall_64+0x54/0x110
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f7d7550ef90
Code: <snip>
RSP: 002b:00007ffd70237248 EFLAGS: 00000202 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f7d7550ef90
RDX: 000000000000013a RSI: 000000000040eb28 RDI: 0000000000000004
RBP: 000000000000001b R08: 0000000000000078 R09: 00007ffd7023725c
R10: 00007f7d75400390 R11: 0000000000000202 R12: 028f5c28f5c28f5c
R13: 8f5c28f5c28f5c29 R14: 000000000040b520 R15: 00007f7d75c726c8
</TASK>
While the root cause of the tree order corruption isn't clear, using
btrfs_duplicate_item() to copy the item and then adjusting both the key
and the per-device physical addresses is a safe way to counter this
problem.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If the stripe extent we want to delete starts before the range we want to
delete and ends after the range we want to delete we're punching a
hole in the stripe extent:
|--- RAID Stripe Extent ---|
| keep |--- drop ---| keep |
This means we need to a) truncate the existing item and b)
create a second item for the remaining range.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When a user requests the deletion of a range that spans multiple stripe
extents and btrfs_search_slot() returns us the second RAID stripe extent,
we need to pick the previous item and truncate it, if there's still a
range to delete left, move on to the next item.
The following diagram illustrates the operation:
|--- RAID Stripe Extent ---||--- RAID Stripe Extent ---|
|--- keep ---|--- drop ---|
While at it, comment the trivial case of a whole item delete as well.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Fix tail delete of RAID stripe-extents, if there is a range to be deleted
as well after the tail delete of the extent.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When deleting the front of a RAID stripe-extent the delete code
miscalculates the size on how much to pad the remaining extent part in the
front.
Fix the calculation so we're always having the sizes we expect.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When modifying a RAID stripe-extent, ASSERT() that the length of the new
RAID stripe-extent is always greater than 0.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Even if the RAID stripe-tree is not enabled in the filesystem,
do_free_extent_accounting() still calls into btrfs_delete_raid_extent().
Check if the extent in question is on a block-group that has a profile
which is used by RAID stripe-tree before attempting to delete a stripe
extent. Return early if it doesn't, otherwise we're doing a unnecessary
search.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The call to btrfs_mark_buffer_dirty() at update_raid_extent_item() is not
necessary as we have a path setup for writing with btrfs_search_slot()
having a 'cow' argument set to 1.
This just makes the code more verbose, confusing and add a little extra
overhead and well as increase the module's text size, so remove it.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Remove the variable length in btrfs_insert_one_raid_extent() as it is
unused.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
In our CI system, the RAID stripe tree configuration sometimes fails with
the following ASSERT():
assertion failed: found_start >= start && found_end <= end, in fs/btrfs/raid-stripe-tree.c:64
This ASSERT()ion triggers, because for the initial design of RAID
stripe-tree, I had the "one ordered-extent equals one bio" rule of zoned
btrfs in mind.
But for a RAID stripe-tree based system, that is not hosted on a zoned
storage device, but on a regular device this rule doesn't apply.
So in case the range we want to delete starts in the middle of the
previous item, grab the item and "truncate" it's length. That is, clone
the item, subtract the deleted portion from the key's offset, delete the
old item and insert the new one.
In case the range to delete ends in the middle of an item, we have to
adjust both the item's key as well as the stripe extents and then
re-insert the modified clone into the tree after deleting the old stripe
extent.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
In case a lookup in the RAID stripe-tree fails, return ENODATA instead of
ENOENT to better distinguish stripe-tree lookups from other code paths
where we return ENOENT.
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Add first stash of very basic self tests for the RAID stripe-tree.
More test cases will follow exercising the tree.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Now that RAID stripe-tree lookup failures are not treated as a fatal issue
any more, change the RAID stripe-tree lookup error message to debug level.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Rename 'btrfs_io_stripe::is_scrub' to 'rst_search_commit_root'. While
'is_scrub' describes the state of the io_stripe (it is a stripe submitted
by scrub) it does not describe the purpose, namely looking at the commit
root when searching RAID stripe-tree entries.
Renaming the stripe to rst_search_commit_root describes this purpose.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This just creates unnecessary noise and doesn't provide any insights into
debugging RAID stripe-tree related issues.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_delete_raid_extent() was written under the assumption, that it's
call-chain always passes a start, length tuple that matches a single
extent. But btrfs_delete_raid_extent() is called by
do_free_extent_accounting() which in turn is called by
__btrfs_free_extent().
But this call-chain passes in a start address and a length that can
possibly match multiple on-disk extents.
To make this possible, we have to adjust the start and length of each
btree node lookup, to not delete beyond the requested range.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Update a stripe extent in case of an already existing logical address,
but with different physical addresses and/or device id instead of
bailing out with EEXIST.
This can happen i.e. in case of a device replace operation, where data
extents get rewritten to a new disk.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Remove the encoding field from 'struct btrfs_stripe_extent'. It was
originally intended to encode the RAID type as well as if we're a data
or a parity stripe.
But the RAID type can be inferred form the block-group and the data vs.
parity differentiation can be done easier with adding a new key type
for parity stripes in the RAID stripe tree.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
With help of neovim, LSP and clangd we can identify header files that
are not actually needed to be included in the .c files. This is focused
only on removal (with minor fixups), further cleanups are possible but
will require doing the header files properly with forward declarations,
minimized includes and include-what-you-use care.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
It's more obvious to return a literal zero instead of "return ret;".
Plus Smatch complains that ret could be uninitialized if the
ordered_extent->bioc_list list is empty and this silences that warning.
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Add trace events for raid-stripe-tree operations.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
A filesystem that uses the raid stripe tree for logical to physical
address translation can't use the regular scrub path, that reads all
stripes and then checks if a sector is unused afterwards.
When using the raid stripe tree, this will result in lookup errors, as
the stripe tree doesn't know the requested logical addresses.
In case we're scrubbing a filesystem which uses the RAID stripe tree for
multi-device logical to physical address translation, perform an extra
block mapping step to get the real on-disk stripe length from the stripe
tree when scrubbing the sectors.
This prevents a double completion of the btrfs_bio caused by splitting the
underlying bio and ultimately a use-after-free.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Lookup the physical address from the raid stripe tree when a read on an
RAID volume formatted with the raid stripe tree was attempted.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
As each stripe extent is tied to an extent item, delete the stripe extent
once the corresponding extent item is deleted.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Add support for inserting stripe extents into the raid stripe tree on
completion of every write that needs an extra logical-to-physical
translation when using RAID.
Inserting the stripe extents happens after the data I/O has completed,
this is done to
a) support zone-append and
b) rule out the possibility of a RAID-write-hole.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|