summaryrefslogtreecommitdiff
path: root/fs/btrfs/zstd.c
AgeCommit message (Collapse)Author
2025-05-15btrfs: use unsigned types for constants defined as bit shiftsDavid Sterba
The unsigned type is a recommended practice (CWE-190, CWE-194) for bit shifts to avoid problems with potential unwanted sign extensions. Although there are no such cases in btrfs codebase, follow the recommendation. Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2025-05-15btrfs: prepare compression paths for large data foliosQu Wenruo
All compression algorithms inside btrfs are not supporting large folios due to the following points: - btrfs_calc_input_length() is assuming page sized folio - kmap_local_folio() usages are using offset_in_page() Prepare them to support large data folios by: - Add a folio parameter to btrfs_calc_input_length() And use that folio parameter to calculate the correct length. Since we're here, also add extra ASSERT()s to make sure the parameter @cur is inside the folio range. This affects only zlib and zstd. Lzo compresses at most one block at a time, thus not affected. - Use offset_in_folio() to calculate the kmap_local_folio() offset This affects all 3 algorithms. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2025-04-05treewide: Switch/rename to timer_delete[_sync]()Thomas Gleixner
timer_delete[_sync]() replaces del_timer[_sync](). Convert the whole tree over and remove the historical wrapper inlines. Conversion was done with coccinelle plus manual fixups where necessary. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2025-03-18btrfs: zstd: remove local variable for storing page offsetsDavid Sterba
When using offset_in_page() it's clear what it means, we don't need to store it in the local variable just to use it right away. There's no change in the generated code, but keeps the declarations smaller. Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: zstd: move zstd_parameters to the workspaceDavid Sterba
Reduce stack consumption of zstd_compress_folios() by 40 bytes (10*sizeof(int)) as we can store struct zstd_parameters in the workspace that is reused for each call. typedef struct { ZSTD_compressionParameters cParams; ZSTD_frameParameters fParams; } ZSTD_parameters; typedef struct { unsigned windowLog; unsigned chainLog; unsigned hashLog; unsigned searchLog; unsigned minMatch; unsigned targetLength; ZSTD_strategy strategy; } ZSTD_compressionParameters; typedef struct { int contentSizeFlag; int checksumFlag; int noDictIDFlag; } ZSTD_frameParameters; Signed-off-by: David Sterba <dsterba@suse.com>
2025-03-18btrfs: zstd: enable negative compression levels mount optionDaniel Vacek
Allow using the fast modes (negative compression levels) of zstd as a mount option. As per the results, the compression ratio is (expectedly) lower: for level in {-15..-1} 1 2 3; \ do printf "level %3d\n" $level; \ mount -o compress=zstd:$level /dev/sdb /mnt/test/; \ grep sdb /proc/mounts; \ cp -r /usr/bin /mnt/test/; sync; compsize /mnt/test/bin; \ cp -r /usr/share/doc /mnt/test/; sync; compsize /mnt/test/doc; \ cp enwik9 /mnt/test/; sync; compsize /mnt/test/enwik9; \ cp linux-6.13.tar /mnt/test/; sync; compsize /mnt/test/linux-6.13.tar; \ rm -r /mnt/test/{bin,doc,enwik9,linux-6.13.tar}; \ umount /mnt/test/; \ done |& tee results | \ awk '/^level/{print}/^TOTAL/{print$3"\t"$2" |"}' | paste - - - - - 266M bin | 45M doc | 953M wiki | 1.4G source =============================+===============+===============+===============+ level -15 180M 67% | 30M 68% | 694M 72% | 598M 40% | level -14 180M 67% | 30M 67% | 683M 71% | 581M 39% | level -13 177M 66% | 29M 66% | 671M 70% | 566M 38% | level -12 174M 65% | 29M 65% | 658M 69% | 548M 37% | level -11 174M 65% | 28M 64% | 645M 67% | 530M 35% | level -10 171M 64% | 28M 62% | 631M 66% | 512M 34% | level -9 165M 62% | 27M 61% | 615M 64% | 493M 33% | level -8 161M 60% | 27M 59% | 598M 62% | 475M 32% | level -7 155M 58% | 26M 58% | 582M 61% | 457M 30% | level -6 151M 56% | 25M 56% | 565M 59% | 437M 29% | level -5 145M 54% | 24M 55% | 545M 57% | 417M 28% | level -4 139M 52% | 23M 52% | 520M 54% | 391M 26% | level -3 135M 50% | 22M 50% | 495M 51% | 369M 24% | level -2 127M 47% | 22M 48% | 470M 49% | 349M 23% | level -1 120M 45% | 21M 47% | 452M 47% | 332M 22% | level 1 110M 41% | 17M 39% | 362M 38% | 290M 19% | level 2 106M 40% | 17M 38% | 349M 36% | 288M 19% | level 3 104M 39% | 16M 37% | 340M 35% | 276M 18% | The samples represent some data sets that can be commonly found and show approximate compressibility. The fast levels trade off speed for ratio and are best suitable for highly compressible data. As can be seen above, comparing the results to the current default zstd level 3, the negative levels are roughly 2x worse at -15 and the ratio increases almost linearly with each level. Signed-off-by: Daniel Vacek <neelx@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11btrfs: zstd: assert the timer pointer in callbackDavid Sterba
Make sure we got the right timer struct for the zstd workspace reclaim work. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-11-11btrfs: zstd: make the compression path to handle sector size < page sizeQu Wenruo
Inside zstd_compress_folios(), after exhausted one input page, we need to switch to the next page as input. However when counting the total input bytes (@tot_in), we always increase it by PAGE_SIZE. For the following case, it can cause incorrect value: 0 32K 64K 96K | |///////////||///////////| After compressing range [32K, 64K), we switch to the next page, and increasing @tot_in by 64K, while we only read 32K. This will cause the @total_in to return a value larger than the input length. Fix it by only increase @tot_in by the input size. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: convert zstd_decompress() to take a folioLi Zetao
The old page API is being gradually replaced and converted to use folio to improve code readability and avoid repeated conversion between page and folio. And memcpy_to_page() can be replaced with memcpy_to_folio(). But there is no memzero_folio(), but it can be replaced equivalently by folio_zero_range(). Signed-off-by: Li Zetao <lizetao1@huawei.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10btrfs: make compression path to be subpage compatibleQu Wenruo
Currently btrfs compression path is not really subpage compatible, every thing is still done in page unit. That's fine for regular sector size and subpage routine. As even for subpage routine compression is only enabled if the whole range is page aligned, so reading the page cache in page unit is totally fine. However in preparation for the future subpage perfect compression support, we need to change the compression routine to properly handle a subpage range. This patch would prepare both zlib and zstd to only read the subpage range for compression. Lzo is already doing subpage aware read, as lzo's on-disk format is already sectorsize dependent. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-11btrfs: enhance compression error messagesDavid Sterba
Add more verbose and specific messages to all main error points in compression code for all algorithms. Currently there's no way to know which inode is affected or where in the data errors happened. The messages follow a common format: - what happened - error code if relevant - root and inode - additional data like offsets or lengths There's no helper for the messages as they differ in some details and that would be cumbersome to generalize to a single function. As all the errors are "almost never happens" there are the unlikely annotations done as compression is hot path. Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: compression: migrate compression/decompression paths to foliosQu Wenruo
For both compression and decompression paths, we always require a "struct page **pages" and "unsigned long nr_pages", this involves quite some part of the btrfs compression paths: - All the compression entry points - compressed_bio structure This affects both compression and decompression. - async_extent structure Unfortunately with all those involved parts, there is no good way to split the conversion into smaller patches while still passing compiling. So do this in one big conversion in one go. Please note this is direct page->folio conversion, no change on the page sized folio requirement yet. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor style fixups ] Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: compression: convert page allocation to folio interfacesQu Wenruo
Currently we have two wrappers to allocate and free a page for compression usage: - btrfs_alloc_compr_page() - btrfs_free_compr_page() The allocator would try to grab a page from the pool, and only allocate a new page if the pool is empty. The reclaimer would check if the pool is full, and if not full it would put the page into the pool. This patch converts both helpers to use folio interfaces, and allowing further conversion of compression path to folios. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-05-07btrfs: compression: add error handling for missed page cacheQu Wenruo
For all the supported compression algorithms, the compression path would always need to grab the page cache, then do the compression. Normally we would get a page reference without any problem, since the write path should have already locked the pages in the write range. For the sake of error handling, we should handle the page cache miss case. Adds a common wrapper, btrfs_compress_find_get_page(), which calls find_get_page(), and do the error handling along with an error message. Callers inside compression path would only need to call btrfs_compress_find_get_page(), and error out if it returned any error. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04btrfs: zstd: fix and simplify the inline extent decompression (v2)Qu Wenruo
Note: this is a fixed version that was previously reverted as e01a83e12604 ("Revert "btrfs: zstd: fix and simplify the inline extent decompression""), with fixed parameters to memzero_page(). [BUG] If we have a filesystem with 4k sectorsize, and an inlined compressed extent created like this: item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160 generation 8 transid 8 size 4096 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24 index 2 namelen 14 name: source_inlined item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69 generation 8 type 0 (inline) inline extent data size 48 ram_bytes 4096 compression 3 (zstd) Then trying to reflink that extent in an aarch64 system with 64K page size, the reflink would just fail: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest XFS_IOC_CLONE_RANGE: Input/output error [CAUSE] In zstd_decompress(), we didn't treat @start_byte as just a page offset, but also use it as an indicator on whether we should error out, without any proper explanation (this is copied from other decompression code). In reality, for subpage cases, although @start_byte can be non-zero, we should never switch input/output buffer nor error out, since the whole input/output buffer should never exceed one sector, thus we should not need to do any buffer switch. Thus the current code using @start_byte as a condition to switch input/output buffer or finish the decompression is completely incorrect. [FIX] The fix involves several modification: - Rename @start_byte to @dest_pgoff to properly express its meaning - Use @sectorsize other than PAGE_SIZE to properly initialize the output buffer size - Use correct destination offset inside the destination page - Simplify the main loop Since the input/output buffer should never switch, we only need one zstd_decompress_stream() call. - Consider early end as an error After the fix, even on 64K page sized aarch64, above reflink now works as expected: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest linked 4096/4096 bytes at offset 61440 And results the correct file layout: item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160 generation 10 transid 10 size 65536 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14 index 3 namelen 4 name: dest item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83 location key (0 UNKNOWN.0 0) type XATTR transid 10 data_len 37 name_len 16 name: security.selinux data unconfined_u:object_r:unlabeled_t:s0 item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53 generation 10 type 1 (regular) extent data disk byte 13631488 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression 0 (none) Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-03-04btrfs: remove unused included headersDavid Sterba
With help of neovim, LSP and clangd we can identify header files that are not actually needed to be included in the .c files. This is focused only on removal (with minor fixups), further cleanups are possible but will require doing the header files properly with forward declarations, minimized includes and include-what-you-use care. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-01-22Revert "btrfs: zstd: fix and simplify the inline extent decompression"Linus Torvalds
This reverts commit 1e7f6def8b2370ecefb54b3c8f390ff894b0c51b. It causes my machine to not even boot, and Klara Modin reports that the cause is that small zstd-compressed files return garbage when read. Reported-by: Klara Modin <klarasmodin@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CABq1_vj4GpUeZpVG49OHCo-3sdbe2-2ROcu_xDvUG-6-5zPRXg@mail.gmail.com/ Reported-and-bisected-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: David Sterba <dsterba@suse.com> Cc: Qu Wenruo <wqu@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-01-18btrfs: zstd: fix and simplify the inline extent decompressionQu Wenruo
[BUG] If we have a filesystem with 4k sectorsize, and an inlined compressed extent created like this: item 4 key (257 INODE_ITEM 0) itemoff 15863 itemsize 160 generation 8 transid 8 size 4096 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 5 key (257 INODE_REF 256) itemoff 15839 itemsize 24 index 2 namelen 14 name: source_inlined item 6 key (257 EXTENT_DATA 0) itemoff 15770 itemsize 69 generation 8 type 0 (inline) inline extent data size 48 ram_bytes 4096 compression 3 (zstd) Then trying to reflink that extent in an aarch64 system with 64K page size, the reflink would just fail: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest XFS_IOC_CLONE_RANGE: Input/output error [CAUSE] In zstd_decompress(), we didn't treat @start_byte as just a page offset, but also use it as an indicator on whether we should error out, without any proper explanation (this is copied from other decompression code). In reality, for subpage cases, although @start_byte can be non-zero, we should never switch input/output buffer nor error out, since the whole input/output buffer should never exceed one sector, thus we should not need to do any buffer switch. Thus the current code using @start_byte as a condition to switch input/output buffer or finish the decompression is completely incorrect. [FIX] The fix involves several modification: - Rename @start_byte to @dest_pgoff to properly express its meaning - Use @sectorsize other than PAGE_SIZE to properly initialize the output buffer size - Use correct destination offset inside the destination page - Simplify the main loop Since the input/output buffer should never switch, we only need one zstd_decompress_stream() call. - Consider early end as an error After the fix, even on 64K page sized aarch64, above reflink now works as expected: # xfs_io -f -c "reflink $mnt/source_inlined 0 60k 4k" $mnt/dest linked 4096/4096 bytes at offset 61440 And results the correct file layout: item 9 key (258 INODE_ITEM 0) itemoff 15542 itemsize 160 generation 10 transid 10 size 65536 nbytes 4096 block group 0 mode 100600 links 1 uid 0 gid 0 rdev 0 sequence 1 flags 0x0(none) item 10 key (258 INODE_REF 256) itemoff 15528 itemsize 14 index 3 namelen 4 name: dest item 11 key (258 XATTR_ITEM 3817753667) itemoff 15445 itemsize 83 location key (0 UNKNOWN.0 0) type XATTR transid 10 data_len 37 name_len 16 name: security.selinux data unconfined_u:object_r:unlabeled_t:s0 item 12 key (258 EXTENT_DATA 61440) itemoff 15392 itemsize 53 generation 10 type 1 (regular) extent data disk byte 13631488 nr 4096 extent data offset 0 nr 4096 ram 4096 extent compression 0 (none) Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-15btrfs: use page alloc/free wrappers for compression pagesDavid Sterba
This is a preparation for managing compression pages in a cache-like manner, instead of asking the allocator each time. The common allocation and free wrappers are introduced and are functionally equivalent to the current code. The freeing helpers need to be carefully placed where the last reference is dropped. This is either after directly allocating (error handling) or when there are no other users of the pages (after copying the contents). It's safe to not use the helper and use put_page() that will handle the reference count. Not using the helper means there's lower number of pages that could be reused without passing them back to allocator. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-12btrfs: reformat remaining kdoc style commentsDavid Sterba
Function name in the comment does not bring much value to code not exposed as API and we don't stick to the kdoc format anymore. Update formatting of parameter descriptions. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-19btrfs: disable allocation warnings for compression workspacesDavid Sterba
The workspaces for compression are typically much larger than a page and for high zstd levels in the range of megabytes. There's a fallback to vmalloc but this can still fail (see the report). Some of the workspaces are preallocated at module load time so we have a safe fallback, otherwise when a new workspace is needed it's allocated but if this fails then the process waits. Which means the warning is only causing noise and we can use the GFP flag to disable it. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=217466 Signed-off-by: David Sterba <dsterba@suse.com>
2023-04-17btrfs: move zero filling of compressed read bios into common codeChristoph Hellwig
All algorithms have to fill the remainder of the orig_bio with zeroes, so do it in common code. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: constify input buffer parameter in compression codeDavid Sterba
The input buffers passed down to compression must never be changed, switch type to u8 as it's a raw byte buffer and use const. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-05btrfs: update function commentsDavid Sterba
Update, reformat or reword function comments. This also removes the kdoc marker so we don't get reports when the function name is missing. Changes made: - remove kdoc markers - reformat the brief description to be a proper sentence - reword to imperative voice - align parameter list - fix typos Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-25btrfs: zstd: replace kmap() with kmap_local_page()Fabio M. De Francesco
The use of kmap() is being deprecated in favor of kmap_local_page(). With kmap_local_page(), the mapping is per thread, CPU local and not globally visible. Therefore, use kmap_local_page() / kunmap_local() in zstd.c because in this file the mappings are per thread and are not visible in other contexts. In the meanwhile use plain page_address() on output pages allocated with the GFP_NOFS flag instead of calling kmap*() on them (since they are always allocated from ZONE_NORMAL). Tested with xfstests on QEMU + KVM 32 bits VM with 4GB of RAM, booting a kernel with HIGHMEM64G enabled. Suggested-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: use non-bh spin_lock in zstd timer callbackSchspa Shi
This is an optimization for fix fee13fe96529 ("btrfs: correct zstd workspace manager lock to use spin_lock_bh()") The critical region for wsm.lock is only accessed by the process context and the softirq context. Because in the soft interrupt, the critical section will not be preempted by the soft interrupt again, there is no need to call spin_lock_bh(&wsm.lock) to turn off the soft interrupt, spin_lock(&wsm.lock) is enough for this situation. Signed-off-by: Schspa Shi <schspa@gmail.com> [ minor comment update ] Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-08lib: zstd: Add kernel-specific APINick Terrell
This patch: - Moves `include/linux/zstd.h` -> `include/linux/zstd_lib.h` - Updates modified zstd headers to yearless copyright - Adds a new API in `include/linux/zstd.h` that is functionally equivalent to the in-use subset of the current API. Functions are renamed to avoid symbol collisions with zstd, to make it clear it is not the upstream zstd API, and to follow the kernel style guide. - Updates all callers to use the new API. There are no functional changes in this patch. Since there are no functional change, I felt it was okay to update all the callers in a single patch. Once the API is approved, the callers are mechanically changed. This patch is preparing for the 3rd patch in this series, which updates zstd to version 1.4.10. Since the upstream zstd API is no longer exposed to callers, the update can happen transparently. Signed-off-by: Nick Terrell <terrelln@fb.com> Tested By: Paul Jones <paul@pauljones.id.au> Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang v13.0.0 on x86-64 Tested-by: Jean-Denis Girard <jd.girard@sysnux.pf>
2021-10-29Revert "btrfs: compression: drop kmap/kunmap from zstd"David Sterba
This reverts commit bbaf9715f3f5b5ff0de71da91fcc34ee9c198ed8. The kmaps in compression code are still needed and cause crashes on 32bit machines (ARM, x86). Reproducible eg. by running fstest btrfs/004 with enabled LZO or ZSTD compression. Example stacktrace with ZSTD on a 32bit ARM machine: Unable to handle kernel NULL pointer dereference at virtual address 00000000 pgd = c4159ed3 [00000000] *pgd=00000000 Internal error: Oops: 5 [#1] PREEMPT SMP ARM Modules linked in: CPU: 0 PID: 210 Comm: kworker/u2:3 Not tainted 5.14.0-rc79+ #12 Hardware name: Allwinner sun4i/sun5i Families Workqueue: btrfs-delalloc btrfs_work_helper PC is at mmiocpy+0x48/0x330 LR is at ZSTD_compressStream_generic+0x15c/0x28c (mmiocpy) from [<c0629648>] (ZSTD_compressStream_generic+0x15c/0x28c) (ZSTD_compressStream_generic) from [<c06297dc>] (ZSTD_compressStream+0x64/0xa0) (ZSTD_compressStream) from [<c049444c>] (zstd_compress_pages+0x170/0x488) (zstd_compress_pages) from [<c0496798>] (btrfs_compress_pages+0x124/0x12c) (btrfs_compress_pages) from [<c043c068>] (compress_file_range+0x3c0/0x834) (compress_file_range) from [<c043c4ec>] (async_cow_start+0x10/0x28) (async_cow_start) from [<c0475c3c>] (btrfs_work_helper+0x100/0x230) (btrfs_work_helper) from [<c014ef68>] (process_one_work+0x1b4/0x418) (process_one_work) from [<c014f210>] (worker_thread+0x44/0x524) (worker_thread) from [<c0156aa4>] (kthread+0x180/0x1b0) (kthread) from [<c0100150>] Link: https://lore.kernel.org/all/CAJCQCtT+OuemovPO7GZk8Y8=qtOObr0XTDp8jh4OHD6y84AFxw@mail.gmail.com/ Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=214839 Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-23btrfs: rework btrfs_decompress_buf2page()Qu Wenruo
There are several bugs inside the function btrfs_decompress_buf2page() - @start_byte doesn't take bvec.bv_offset into consideration Thus it can't handle case where the target range is not page aligned. - Too many helper variables There are tons of helper variables, @buf_offset, @current_buf_start, @start_byte, @prev_start_byte, @working_bytes, @bytes. This hurts anyone who wants to read the function. - No obvious main cursor for the iteartion A new problem caused by previous problem. - Comments for parameter list makes no sense Like @buf_start is the offset to @buf, or offset inside the full decompressed extent? (Spoiler alert, the later case) And @total_out acts more like @buf_start + @size_of_buf. The worst is @disk_start. The real meaning of it is the file offset of the full decompressed extent. This patch will rework the whole function by: - Add a proper comment with ASCII art to explain the parameter list - Rework parameter list The old @buf_start is renamed to @decompressed, to show how many bytes are already decompressed inside the full decompressed extent. The old @total_out is replaced by @buf_len, which is the decompressed data size. For old @disk_start and @bio, just pass @compressed_bio in. - Use single main cursor The main cursor will be @cur_file_offset, to show what's the current file offset. Other helper variables will be declared inside the main loop, and only minimal amount of helper variables: * offset_inside_decompressed_buf: The only real helper * copy_start_file_offset: File offset we start memcpy * bvec_file_offset: File offset of current bvec Even with all these extensive comments, the final function is still smaller than the original function, which is definitely a win. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-23btrfs: compression: drop kmap/kunmap from zstdDavid Sterba
As we don't use highmem pages anymore, drop the kmap/kunmap. The kmap is simply page_address and kunmap is a no-op. Signed-off-by: David Sterba <dsterba@suse.com>
2021-08-23btrfs: drop from __GFP_HIGHMEM all allocationsDavid Sterba
The highmem flag is used for allocating pages for compression and for raid56 pages. The high memory makes sense on 32bit systems but is not without problems. On 64bit system's it's just another layer of wrappers. The time the pages are allocated for compression or raid56 is relatively short (about a transaction commit), so the pages are not blocked indefinitely. As the number of pages depends on the amount of data being written/read, there's a theoretical problem. A fast device on a 32bit system could use most of the low memory pool, while with the highmem allocation that would not happen. This was possibly the original idea long time ago, but nowadays we optimize for 64bit systems. This patch removes all usage of the __GFP_HIGHMEM flag for page allocation, the kmap/kunmap are still in place and will be removed in followup patches. Remaining is masking out the bit in alloc_extent_state and __lookup_free_space_inode, that can safely stay. Signed-off-by: David Sterba <dsterba@suse.com>
2021-05-05btrfs: use memzero_page() instead of open coded kmap patternIra Weiny
There are many places where kmap/memset/kunmap patterns occur. Use the newly lifted memzero_page() to eliminate direct uses of kmap and leverage the new core functions use of kmap_local_page(). The development of this patch was aided by the following coccinelle script: // <smpl> // SPDX-License-Identifier: GPL-2.0-only // Find kmap/memset/kunmap pattern and replace with memset*page calls // // NOTE: Offsets and other expressions may be more complex than what the script // will automatically generate. Therefore a catchall rule is provided to find // the pattern which then must be evaluated by hand. // // Confidence: Low // Copyright: (C) 2021 Intel Corporation // URL: http://coccinelle.lip6.fr/ // Comments: // Options: // // Then the memset pattern // @ memset_rule1 @ expression page, V, L, Off; identifier ptr; type VP; @@ ( -VP ptr = kmap(page); | -ptr = kmap(page); | -VP ptr = kmap_atomic(page); | -ptr = kmap_atomic(page); ) <+... ( -memset(ptr, 0, L); +memzero_page(page, 0, L); | -memset(ptr + Off, 0, L); +memzero_page(page, Off, L); | -memset(ptr, V, L); +memset_page(page, V, 0, L); | -memset(ptr + Off, V, L); +memset_page(page, V, Off, L); ) ...+> ( -kunmap(page); | -kunmap_atomic(ptr); ) // Remove any pointers left unused @ depends on memset_rule1 @ identifier memset_rule1.ptr; type VP, VP1; @@ -VP ptr; ... when != ptr; ? VP1 ptr; // // Catch all // @ memset_rule2 @ expression page; identifier ptr; expression GenTo, GenSize, GenValue; type VP; @@ ( -VP ptr = kmap(page); | -ptr = kmap(page); | -VP ptr = kmap_atomic(page); | -ptr = kmap_atomic(page); ) <+... ( // // Some call sites have complex expressions within the memset/memcpy // The follow are catch alls which need to be evaluated by hand. // -memset(GenTo, 0, GenSize); +memzero_pageExtra(page, GenTo, GenSize); | -memset(GenTo, GenValue, GenSize); +memset_pageExtra(page, GenValue, GenTo, GenSize); ) ...+> ( -kunmap(page); | -kunmap_atomic(ptr); ) // Remove any pointers left unused @ depends on memset_rule2 @ identifier memset_rule2.ptr; type VP, VP1; @@ -VP ptr; ... when != ptr; ? VP1 ptr; // </smpl> Link: https://lkml.kernel.org/r/20210309212137.2610186-4-ira.weiny@intel.com Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> Cc: Chris Mason <clm@fb.com> Cc: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26btrfs: use memcpy_[to|from]_page() and kmap_local_page()Ira Weiny
There are many places where the pattern kmap/memcpy/kunmap occurs. This pattern was lifted to the core common functions memcpy_[to|from]_page(). Use these new functions to reduce the code, eliminate direct uses of kmap, and leverage the new core functions use of kmap_local_page(). Also, there is 1 place where a kmap/memcpy is followed by an optional memset. Here we leave the kmap open coded to avoid remapping the page but use kmap_local_page() directly. Development of this patch was aided by the coccinelle script: // <smpl> // SPDX-License-Identifier: GPL-2.0-only // Find kmap/memcpy/kunmap pattern and replace with memcpy*page calls // // NOTE: Offsets and other expressions may be more complex than what the script // will automatically generate. Therefore a catchall rule is provided to find // the pattern which then must be evaluated by hand. // // Confidence: Low // Copyright: (C) 2021 Intel Corporation // URL: http://coccinelle.lip6.fr/ // Comments: // Options: // // simple memcpy version // @ memcpy_rule1 @ expression page, T, F, B, Off; identifier ptr; type VP; @@ ( -VP ptr = kmap(page); | -ptr = kmap(page); | -VP ptr = kmap_atomic(page); | -ptr = kmap_atomic(page); ) <+... ( -memcpy(ptr + Off, F, B); +memcpy_to_page(page, Off, F, B); | -memcpy(ptr, F, B); +memcpy_to_page(page, 0, F, B); | -memcpy(T, ptr + Off, B); +memcpy_from_page(T, page, Off, B); | -memcpy(T, ptr, B); +memcpy_from_page(T, page, 0, B); ) ...+> ( -kunmap(page); | -kunmap_atomic(ptr); ) // Remove any pointers left unused @ depends on memcpy_rule1 @ identifier memcpy_rule1.ptr; type VP, VP1; @@ -VP ptr; ... when != ptr; ? VP1 ptr; // // Some callers kmap without a temp pointer // @ memcpy_rule2 @ expression page, T, Off, F, B; @@ <+... ( -memcpy(kmap(page) + Off, F, B); +memcpy_to_page(page, Off, F, B); | -memcpy(kmap(page), F, B); +memcpy_to_page(page, 0, F, B); | -memcpy(T, kmap(page) + Off, B); +memcpy_from_page(T, page, Off, B); | -memcpy(T, kmap(page), B); +memcpy_from_page(T, page, 0, B); ) ...+> -kunmap(page); // No need for the ptr variable removal // // Catch all // @ memcpy_rule3 @ expression page; expression GenTo, GenFrom, GenSize; identifier ptr; type VP; @@ ( -VP ptr = kmap(page); | -ptr = kmap(page); | -VP ptr = kmap_atomic(page); | -ptr = kmap_atomic(page); ) <+... ( // // Some call sites have complex expressions within the memcpy // match a catch all to be evaluated by hand. // -memcpy(GenTo, GenFrom, GenSize); +memcpy_to_pageExtra(page, GenTo, GenFrom, GenSize); +memcpy_from_pageExtra(GenTo, page, GenFrom, GenSize); ) ...+> ( -kunmap(page); | -kunmap_atomic(ptr); ) // Remove any pointers left unused @ depends on memcpy_rule3 @ identifier memcpy_rule3.ptr; type VP, VP1; @@ -VP ptr; ... when != ptr; ? VP1 ptr; // <smpl> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18btrfs: compression: inline free_workspaceDavid Sterba
Replace indirect calls to free_workspace by switch and calls to the specific callbacks. This is mainly to get rid of the indirection due to spectre vulnerability mitigations. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18btrfs: compression: inline alloc_workspaceDavid Sterba
Replace indirect calls to alloc_workspace by switch and calls to the specific callbacks. This is mainly to get rid of the indirection due to spectre vulnerability mitigations. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18btrfs: compression: inline put_workspaceDavid Sterba
Similar to get_workspace, majority of the callbacks is trivial, we don't gain anything by the indirection, so replace them by a switch function. Trivial callback implementations use the helper. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18btrfs: compression: inline get_workspaceDavid Sterba
Majority of the callbacks is trivial, we don't gain anything by the indirection, so replace them by a switch function. ZLIB needs to adjust level in the callback and ZSTD workspace management is complex, the rest is call to the helper. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18btrfs: compression: export alloc/free/get/put callbacks of all algosDavid Sterba
The indirect calls will be replaced by a switch in compression.c. (Switch is faster than indirect calls with when Spectre mitigations are enabled). Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18btrfs: compression: inline cleanup_workspace_managerDavid Sterba
Replace loop calling to all algos with a list of direct calls to the cleanup manager callback. When that becomes trivial it is replaced by direct call to the helper. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18btrfs: compression: inline init_workspace_managerDavid Sterba
Replace loop calling to all algos with a list of direct calls to the init manager callback. When that becomes trivial it is replaced by direct call to the helper. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18btrfs: compression: attach workspace manager to the opsDavid Sterba
There's a lot of indirection when the generic code calls into algo-specific callbacks to reach the private workspace manager structure and back to the generic code. To simplify that, export the workspace manager for heuristic, LZO and ZLIB, while ZSTD is going to use it's own manager. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18btrfs: switch compression callbacks to direct callsDavid Sterba
The indirect calls bring some overhead due to spectre vulnerability mitigations. The number of cases is small and below the threshold (10-20) where indirect call would be better. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-18btrfs: export compression and decompression callbacksDavid Sterba
Export compress_pages, decompress_bio and decompress callbacks for all compression algos. The indirect calls will be replaced by a switch. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09btrfs: move cond_wake_up functions out of ctreeDavid Sterba
The file ctree.h serves as a header for everything and has become quite bloated. Split some helpers that are generic and create a new file that should be the catch-all for code that's not btrfs-specific. Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09btrfs: compression: replace set_level callbacks by a common helperDavid Sterba
The set_level callbacks do not do anything special and can be replaced by a helper that uses the levels defined in the tables. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-09btrfs: define compression levels staticallyDavid Sterba
The maximum and default levels do not change and can be defined directly. The set_level callback was a temporary solution and will be removed. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-05-28btrfs: correct zstd workspace manager lock to use spin_lock_bh()Dennis Zhou
The btrfs zstd workspace manager uses a background timer to reclaim not recently used workspaces. I used spin_lock() from this context which should have been caught with lockdep, but was not. This deadlock was reported in bugzilla. The fix is to switch the zstd wsm lock to use spin_lock_bh() from the softirq context. This happened quite relibably on ppc64, unlike on other architectures. [ 313.402874] ================================ [ 313.402875] WARNING: inconsistent lock state [ 313.402879] 5.1.0-rc7 #1 Not tainted [ 313.402880] -------------------------------- [ 313.402882] inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage. [ 313.402885] swapper/5/0 [HC0[0]:SC1[1]:HE1:SE0] takes: [ 313.402888] 0000000080d1120c (&(&wsm.lock)->rlock){+.?.}, at: .zstd_reclaim_timer_fn+0x40/0x230 [ 313.402895] {SOFTIRQ-ON-W} state was registered at: [ 313.402899] .lock_acquire+0xd0/0x240 [ 313.402903] ._raw_spin_lock+0x34/0x60 [ 313.402906] .zstd_get_workspace+0xd0/0x360 [ 313.402908] .end_compressed_bio_read+0x3b8/0x540 [ 313.402911] .bio_endio+0x174/0x2c0 [ 313.402914] .end_workqueue_fn+0x4c/0x70 [ 313.402917] .normal_work_helper+0x138/0x7e0 [ 313.402920] .process_one_work+0x324/0x790 [ 313.402922] .worker_thread+0x68/0x570 [ 313.402925] .kthread+0x19c/0x1b0 [ 313.402928] .ret_from_kernel_thread+0x58/0x78 [ 313.402930] irq event stamp: 2629216 [ 313.402933] hardirqs last enabled at (2629216): [<c0000000009da738>] ._raw_spin_unlock_irq+0x38/0x60 [ 313.402936] hardirqs last disabled at (2629215): [<c0000000009da4c4>] ._raw_spin_lock_irq+0x24/0x70 [ 313.402939] softirqs last enabled at (2629212): [<c0000000000af9fc>] .irq_enter+0x8c/0xd0 [ 313.402942] softirqs last disabled at (2629213): [<c0000000000afb58>] .irq_exit+0x118/0x170 [ 313.402944] other info that might help us debug this: [ 313.402945] Possible unsafe locking scenario: [ 313.402947] CPU0 [ 313.402948] ---- [ 313.402949] lock(&(&wsm.lock)->rlock); [ 313.402951] <Interrupt> [ 313.402952] lock(&(&wsm.lock)->rlock); [ 313.402954] *** DEADLOCK *** [ 313.402957] 1 lock held by swapper/5/0: [ 313.402958] #0: 000000004b612042 ((&wsm.timer)){+.-.}, at: .call_timer_fn+0x0/0x3c0 [ 313.402963] stack backtrace: [ 313.402967] CPU: 5 PID: 0 Comm: swapper/5 Not tainted 5.1.0-rc7 #1 [ 313.402968] Call Trace: [ 313.402972] [c0000007fa262e70] [c0000000009b3294] .dump_stack+0xe0/0x15c (unreliable) [ 313.402975] [c0000007fa262f10] [c000000000125548] .print_usage_bug+0x348/0x390 [ 313.402978] [c0000007fa262fd0] [c000000000125cb4] .mark_lock+0x724/0x930 [ 313.402981] [c0000007fa263080] [c000000000126c20] .__lock_acquire+0xc90/0x16a0 [ 313.402984] [c0000007fa2631b0] [c000000000128040] .lock_acquire+0xd0/0x240 [ 313.402987] [c0000007fa263280] [c0000000009da2b4] ._raw_spin_lock+0x34/0x60 [ 313.402990] [c0000007fa263300] [c00000000054b0b0] .zstd_reclaim_timer_fn+0x40/0x230 [ 313.402993] [c0000007fa2633d0] [c000000000158b38] .call_timer_fn+0xc8/0x3c0 [ 313.402996] [c0000007fa2634a0] [c000000000158f74] .expire_timers+0x144/0x260 [ 313.402999] [c0000007fa263550] [c000000000159178] .run_timer_softirq+0xe8/0x230 [ 313.403002] [c0000007fa263680] [c0000000009db288] .__do_softirq+0x188/0x5d4 [ 313.403004] [c0000007fa263790] [c0000000000afb58] .irq_exit+0x118/0x170 [ 313.403008] [c0000007fa263800] [c000000000028d88] .timer_interrupt+0x158/0x430 [ 313.403012] [c0000007fa2638b0] [c0000000000091d4] decrementer_common+0x134/0x140 [ 313.403017] --- interrupt: 901 at replay_interrupt_return+0x0/0x4 LR = .arch_local_irq_restore.part.0+0x68/0x80 [ 313.403020] [c0000007fa263bb0] [c00000000001a3ac] .arch_local_irq_restore.part.0+0x2c/0x80 (unreliable) [ 313.403024] [c0000007fa263c30] [c0000000007bbbcc] .cpuidle_enter_state+0xec/0x670 [ 313.403027] [c0000007fa263d00] [c0000000000f5130] .call_cpuidle+0x40/0x90 [ 313.403031] [c0000007fa263d70] [c0000000000f554c] .do_idle+0x2dc/0x3a0 [ 313.403034] [c0000007fa263e30] [c0000000000f59ac] .cpu_startup_entry+0x2c/0x30 [ 313.403037] [c0000007fa263ea0] [c000000000045674] .start_secondary+0x644/0x650 [ 313.403041] [c0000007fa263f90] [c00000000000ad5c] start_secondary_prolog+0x10/0x14 Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203517 Fixes: 3f93aef535c8 ("btrfs: add zstd compression level support") CC: stable@vger.kernel.org # 5.1+ Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-29btrfs: zstd: remove indirect calls for local functionsDennis Zhou
While calling functions inside zstd, we don't need to use the indirection provided by the workspace_manager. Forward declarations are added to maintain the function order of btrfs_compress_op. Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-27btrfs: zstd: ensure reclaim timer is properly cleaned upDennis Zhou
The timer function, zstd_reclaim_timer_fn(), reschedules itself under certain conditions. When cleaning up, take the lock and remove all workspaces. This prevents the timer from rearming itself. Lastly, switch to del_timer_sync() to ensure that the timer function can't trigger as we're unloading. Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25btrfs: add zstd compression level supportDennis Zhou
Zstd compression requires different amounts of memory for each level of compression. The prior patches implemented indirection to allow for each compression type to manage their workspaces independently. This patch uses this indirection to implement compression level support for zstd. To manage the additional memory require, each compression level has its own queue of workspaces. A global LRU is used to help with reclaim. Reclaim is done via a timer which provides a mechanism to decrease memory utilization by keeping only workspaces around that are sized appropriately. Forward progress is guaranteed by a preallocated max workspace hidden from the LRU. When getting a workspace, it uses a bitmap to identify the levels that are populated and scans up. If it finds a workspace that is greater than it, it uses it, but does not update the last_used time and the corresponding place in the LRU. If we hit memory pressure, we sleep on the max level workspace. We continue to rescan in case we can use a smaller workspace, but eventually should be able to obtain the max level workspace or allocate one again should memory pressure subside. The memory requirement for decompression is the same as level 1, and therefore can use any of available workspace. The number of workspaces is bound by an upper limit of the workqueue's limit which currently is 2 (percpu limit). The reclaim timer is used to free inactive/improperly sized workspaces and is set to 307s to avoid colliding with transaction commit (every 30s). Repeating the experiment from v2 [1], the Silesia corpus was copied to a btrfs filesystem 10 times and then read back after dropping the caches. The btrfs filesystem was on an SSD. Level Ratio Compression (MB/s) Decompression (MB/s) Memory (KB) 1 2.658 438.47 910.51 780 2 2.744 364.86 886.55 1004 3 2.801 336.33 828.41 1260 4 2.858 286.71 886.55 1260 5 2.916 212.77 556.84 1388 6 2.363 119.82 990.85 1516 7 3.000 154.06 849.30 1516 8 3.011 159.54 875.03 1772 9 3.025 100.51 940.15 1772 10 3.033 118.97 616.26 1772 11 3.036 94.19 802.11 1772 12 3.037 73.45 931.49 1772 13 3.041 55.17 835.26 2284 14 3.087 44.70 716.78 2547 15 3.126 37.30 878.84 2547 [1] https://lore.kernel.org/linux-btrfs/20181031181108.289340-1-terrelln@fb.com/ Cc: Nick Terrell <terrelln@fb.com> Cc: Omar Sandoval <osandov@osandov.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>