Age | Commit message (Collapse) | Author |
|
Add an implementation of sha256_finup_2x_arch() for x86_64. It
interleaves the computation of two SHA-256 hashes using the x86 SHA-NI
instructions. dm-verity and fs-verity will take advantage of this for
greatly improved performance on capable CPUs.
This increases the throughput of SHA-256 hashing 4096-byte messages by
the following amounts on the following CPUs:
Intel Ice Lake (server): 4%
Intel Sapphire Rapids: 38%
Intel Emerald Rapids: 38%
AMD Zen 1 (Threadripper 1950X): 84%
AMD Zen 4 (EPYC 9B14): 98%
AMD Zen 5 (Ryzen 9 9950X): 64%
For now, this seems to benefit AMD more than Intel. This seems to be
because current AMD CPUs support concurrent execution of the SHA-NI
instructions, but unfortunately current Intel CPUs don't, except for the
sha256msg2 instruction. Hopefully future Intel CPUs will support SHA-NI
on more execution ports. Zen 1 supports 2 concurrent sha256rnds2, and
Zen 4 supports 4 concurrent sha256rnds2, which suggests that even better
performance may be achievable on Zen 4 by interleaving more than two
hashes. However, doing so poses a number of trade-offs, and furthermore
Zen 5 goes back to supporting "only" 2 concurrent sha256rnds2.
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250915160819.140019-4-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Since sha256_blocks() is called only with nblocks >= 1, remove
unnecessary checks for nblocks == 0 from the x86 SHA-256 assembly code.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250704023958.73274-3-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
As I did for sha512_blocks(), reorganize x86's sha256_blocks() to be
just a static_call. To achieve that, for each assembly function add a C
function that handles the kernel-mode FPU section and fallback. While
this increases total code size slightly, the amount of code actually
executed on a given system does not increase, and it is slightly more
efficient since it eliminates the extra static_key. It also makes the
assembly functions be called with standard direct calls instead of
static calls, eliminating the need for ANNOTATE_NOENDBR.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250704023958.73274-2-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
The previous commit made the SHA-256 compression function state be
strongly typed, but it wasn't propagated all the way down to the
implementations of it. Do that now.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20250630160645.3198-8-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|
|
Move the contents of arch/x86/lib/crypto/ into lib/crypto/x86/.
The new code organization makes a lot more sense for how this code
actually works and is developed. In particular, it makes it possible to
build each algorithm as a single module, with better inlining and dead
code elimination. For a more detailed explanation, see the patchset
which did this for the CRC library code:
https://lore.kernel.org/r/20250607200454.73587-1-ebiggers@kernel.org/.
Also see the patchset which did this for SHA-512:
https://lore.kernel.org/linux-crypto/20250616014019.415791-1-ebiggers@kernel.org/
This is just a preparatory commit, which does the move to get the files
into their new location but keeps them building the same way as before.
Later commits will make the actual improvements to the way the
arch-optimized code is integrated for each algorithm.
Add a gitignore entry for the removed directory arch/x86/lib/crypto/ so
that people don't accidentally commit leftover generated files.
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20250619191908.134235-9-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@kernel.org>
|