summaryrefslogtreecommitdiff
path: root/rust/kernel/opp.rs
blob: a566fc3e7dcb87237c68eb7d174efa5658712ddb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
// SPDX-License-Identifier: GPL-2.0

//! Operating performance points.
//!
//! This module provides rust abstractions for interacting with the OPP subsystem.
//!
//! C header: [`include/linux/pm_opp.h`](srctree/include/linux/pm_opp.h)
//!
//! Reference: <https://docs.kernel.org/power/opp.html>

use crate::{
    clk::Hertz,
    cpumask::{Cpumask, CpumaskVar},
    device::Device,
    error::{code::*, from_err_ptr, from_result, to_result, Error, Result, VTABLE_DEFAULT_ERROR},
    ffi::c_ulong,
    prelude::*,
    str::CString,
    types::{ARef, AlwaysRefCounted, Opaque},
};

#[cfg(CONFIG_CPU_FREQ)]
/// Frequency table implementation.
mod freq {
    use super::*;
    use crate::cpufreq;
    use core::ops::Deref;

    /// OPP frequency table.
    ///
    /// A [`cpufreq::Table`] created from [`Table`].
    pub struct FreqTable {
        dev: ARef<Device>,
        ptr: *mut bindings::cpufreq_frequency_table,
    }

    impl FreqTable {
        /// Creates a new instance of [`FreqTable`] from [`Table`].
        pub(crate) fn new(table: &Table) -> Result<Self> {
            let mut ptr: *mut bindings::cpufreq_frequency_table = ptr::null_mut();

            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
            // requirements.
            to_result(unsafe {
                bindings::dev_pm_opp_init_cpufreq_table(table.dev.as_raw(), &mut ptr)
            })?;

            Ok(Self {
                dev: table.dev.clone(),
                ptr,
            })
        }

        /// Returns a reference to the underlying [`cpufreq::Table`].
        #[inline]
        fn table(&self) -> &cpufreq::Table {
            // SAFETY: The `ptr` is guaranteed by the C code to be valid.
            unsafe { cpufreq::Table::from_raw(self.ptr) }
        }
    }

    impl Deref for FreqTable {
        type Target = cpufreq::Table;

        #[inline]
        fn deref(&self) -> &Self::Target {
            self.table()
        }
    }

    impl Drop for FreqTable {
        fn drop(&mut self) {
            // SAFETY: The pointer was created via `dev_pm_opp_init_cpufreq_table`, and is only
            // freed here.
            unsafe {
                bindings::dev_pm_opp_free_cpufreq_table(self.dev.as_raw(), &mut self.as_raw())
            };
        }
    }
}

#[cfg(CONFIG_CPU_FREQ)]
pub use freq::FreqTable;

use core::{marker::PhantomData, ptr};

use macros::vtable;

/// Creates a null-terminated slice of pointers to [`Cstring`]s.
fn to_c_str_array(names: &[CString]) -> Result<KVec<*const u8>> {
    // Allocated a null-terminated vector of pointers.
    let mut list = KVec::with_capacity(names.len() + 1, GFP_KERNEL)?;

    for name in names.iter() {
        list.push(name.as_ptr() as _, GFP_KERNEL)?;
    }

    list.push(ptr::null(), GFP_KERNEL)?;
    Ok(list)
}

/// The voltage unit.
///
/// Represents voltage in microvolts, wrapping a [`c_ulong`] value.
///
/// ## Examples
///
/// ```
/// use kernel::opp::MicroVolt;
///
/// let raw = 90500;
/// let volt = MicroVolt(raw);
///
/// assert_eq!(usize::from(volt), raw);
/// assert_eq!(volt, MicroVolt(raw));
/// ```
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct MicroVolt(pub c_ulong);

impl From<MicroVolt> for c_ulong {
    #[inline]
    fn from(volt: MicroVolt) -> Self {
        volt.0
    }
}

/// The power unit.
///
/// Represents power in microwatts, wrapping a [`c_ulong`] value.
///
/// ## Examples
///
/// ```
/// use kernel::opp::MicroWatt;
///
/// let raw = 1000000;
/// let power = MicroWatt(raw);
///
/// assert_eq!(usize::from(power), raw);
/// assert_eq!(power, MicroWatt(raw));
/// ```
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct MicroWatt(pub c_ulong);

impl From<MicroWatt> for c_ulong {
    #[inline]
    fn from(power: MicroWatt) -> Self {
        power.0
    }
}

/// Handle for a dynamically created [`OPP`].
///
/// The associated [`OPP`] is automatically removed when the [`Token`] is dropped.
///
/// ## Examples
///
/// The following example demonstrates how to create an [`OPP`] dynamically.
///
/// ```
/// use kernel::clk::Hertz;
/// use kernel::device::Device;
/// use kernel::error::Result;
/// use kernel::opp::{Data, MicroVolt, Token};
/// use kernel::types::ARef;
///
/// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> {
///     let data = Data::new(freq, volt, level, false);
///
///     // OPP is removed once token goes out of scope.
///     data.add_opp(dev)
/// }
/// ```
pub struct Token {
    dev: ARef<Device>,
    freq: Hertz,
}

impl Token {
    /// Dynamically adds an [`OPP`] and returns a [`Token`] that removes it on drop.
    fn new(dev: &ARef<Device>, mut data: Data) -> Result<Self> {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        to_result(unsafe { bindings::dev_pm_opp_add_dynamic(dev.as_raw(), &mut data.0) })?;
        Ok(Self {
            dev: dev.clone(),
            freq: data.freq(),
        })
    }
}

impl Drop for Token {
    fn drop(&mut self) {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        unsafe { bindings::dev_pm_opp_remove(self.dev.as_raw(), self.freq.into()) };
    }
}

/// OPP data.
///
/// Rust abstraction for the C `struct dev_pm_opp_data`, used to define operating performance
/// points (OPPs) dynamically.
///
/// ## Examples
///
/// The following example demonstrates how to create an [`OPP`] with [`Data`].
///
/// ```
/// use kernel::clk::Hertz;
/// use kernel::device::Device;
/// use kernel::error::Result;
/// use kernel::opp::{Data, MicroVolt, Token};
/// use kernel::types::ARef;
///
/// fn create_opp(dev: &ARef<Device>, freq: Hertz, volt: MicroVolt, level: u32) -> Result<Token> {
///     let data = Data::new(freq, volt, level, false);
///
///     // OPP is removed once token goes out of scope.
///     data.add_opp(dev)
/// }
/// ```
#[repr(transparent)]
pub struct Data(bindings::dev_pm_opp_data);

impl Data {
    /// Creates a new instance of [`Data`].
    ///
    /// This can be used to define a dynamic OPP to be added to a device.
    pub fn new(freq: Hertz, volt: MicroVolt, level: u32, turbo: bool) -> Self {
        Self(bindings::dev_pm_opp_data {
            turbo,
            freq: freq.into(),
            u_volt: volt.into(),
            level,
        })
    }

    /// Adds an [`OPP`] dynamically.
    ///
    /// Returns a [`Token`] that ensures the OPP is automatically removed
    /// when it goes out of scope.
    #[inline]
    pub fn add_opp(self, dev: &ARef<Device>) -> Result<Token> {
        Token::new(dev, self)
    }

    /// Returns the frequency associated with this OPP data.
    #[inline]
    fn freq(&self) -> Hertz {
        Hertz(self.0.freq)
    }
}

/// [`OPP`] search options.
///
/// ## Examples
///
/// Defines how to search for an [`OPP`] in a [`Table`] relative to a frequency.
///
/// ```
/// use kernel::clk::Hertz;
/// use kernel::error::Result;
/// use kernel::opp::{OPP, SearchType, Table};
/// use kernel::types::ARef;
///
/// fn find_opp(table: &Table, freq: Hertz) -> Result<ARef<OPP>> {
///     let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?;
///
///     pr_info!("OPP frequency is: {:?}\n", opp.freq(None));
///     pr_info!("OPP voltage is: {:?}\n", opp.voltage());
///     pr_info!("OPP level is: {}\n", opp.level());
///     pr_info!("OPP power is: {:?}\n", opp.power());
///
///     Ok(opp)
/// }
/// ```
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum SearchType {
    /// Match the exact frequency.
    Exact,
    /// Find the highest frequency less than or equal to the given value.
    Floor,
    /// Find the lowest frequency greater than or equal to the given value.
    Ceil,
}

/// OPP configuration callbacks.
///
/// Implement this trait to customize OPP clock and regulator setup for your device.
#[vtable]
pub trait ConfigOps {
    /// This is typically used to scale clocks when transitioning between OPPs.
    #[inline]
    fn config_clks(_dev: &Device, _table: &Table, _opp: &OPP, _scaling_down: bool) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }

    /// This provides access to the old and new OPPs, allowing for safe regulator adjustments.
    #[inline]
    fn config_regulators(
        _dev: &Device,
        _opp_old: &OPP,
        _opp_new: &OPP,
        _data: *mut *mut bindings::regulator,
        _count: u32,
    ) -> Result {
        build_error!(VTABLE_DEFAULT_ERROR)
    }
}

/// OPP configuration token.
///
/// Returned by the OPP core when configuration is applied to a [`Device`]. The associated
/// configuration is automatically cleared when the token is dropped.
pub struct ConfigToken(i32);

impl Drop for ConfigToken {
    fn drop(&mut self) {
        // SAFETY: This is the same token value returned by the C code via `dev_pm_opp_set_config`.
        unsafe { bindings::dev_pm_opp_clear_config(self.0) };
    }
}

/// OPP configurations.
///
/// Rust abstraction for the C `struct dev_pm_opp_config`.
///
/// ## Examples
///
/// The following example demonstrates how to set OPP property-name configuration for a [`Device`].
///
/// ```
/// use kernel::device::Device;
/// use kernel::error::Result;
/// use kernel::opp::{Config, ConfigOps, ConfigToken};
/// use kernel::str::CString;
/// use kernel::types::ARef;
/// use kernel::macros::vtable;
///
/// #[derive(Default)]
/// struct Driver;
///
/// #[vtable]
/// impl ConfigOps for Driver {}
///
/// fn configure(dev: &ARef<Device>) -> Result<ConfigToken> {
///     let name = CString::try_from_fmt(fmt!("{}", "slow"))?;
///
///     // The OPP configuration is cleared once the [`ConfigToken`] goes out of scope.
///     Config::<Driver>::new()
///         .set_prop_name(name)?
///         .set(dev)
/// }
/// ```
#[derive(Default)]
pub struct Config<T: ConfigOps>
where
    T: Default,
{
    clk_names: Option<KVec<CString>>,
    prop_name: Option<CString>,
    regulator_names: Option<KVec<CString>>,
    supported_hw: Option<KVec<u32>>,

    // Tuple containing (required device, index)
    required_dev: Option<(ARef<Device>, u32)>,
    _data: PhantomData<T>,
}

impl<T: ConfigOps + Default> Config<T> {
    /// Creates a new instance of [`Config`].
    #[inline]
    pub fn new() -> Self {
        Self::default()
    }

    /// Initializes clock names.
    pub fn set_clk_names(mut self, names: KVec<CString>) -> Result<Self> {
        if self.clk_names.is_some() {
            return Err(EBUSY);
        }

        if names.is_empty() {
            return Err(EINVAL);
        }

        self.clk_names = Some(names);
        Ok(self)
    }

    /// Initializes property name.
    pub fn set_prop_name(mut self, name: CString) -> Result<Self> {
        if self.prop_name.is_some() {
            return Err(EBUSY);
        }

        self.prop_name = Some(name);
        Ok(self)
    }

    /// Initializes regulator names.
    pub fn set_regulator_names(mut self, names: KVec<CString>) -> Result<Self> {
        if self.regulator_names.is_some() {
            return Err(EBUSY);
        }

        if names.is_empty() {
            return Err(EINVAL);
        }

        self.regulator_names = Some(names);

        Ok(self)
    }

    /// Initializes required devices.
    pub fn set_required_dev(mut self, dev: ARef<Device>, index: u32) -> Result<Self> {
        if self.required_dev.is_some() {
            return Err(EBUSY);
        }

        self.required_dev = Some((dev, index));
        Ok(self)
    }

    /// Initializes supported hardware.
    pub fn set_supported_hw(mut self, hw: KVec<u32>) -> Result<Self> {
        if self.supported_hw.is_some() {
            return Err(EBUSY);
        }

        if hw.is_empty() {
            return Err(EINVAL);
        }

        self.supported_hw = Some(hw);
        Ok(self)
    }

    /// Sets the configuration with the OPP core.
    ///
    /// The returned [`ConfigToken`] will remove the configuration when dropped.
    pub fn set(self, dev: &Device) -> Result<ConfigToken> {
        let (_clk_list, clk_names) = match &self.clk_names {
            Some(x) => {
                let list = to_c_str_array(x)?;
                let ptr = list.as_ptr();
                (Some(list), ptr)
            }
            None => (None, ptr::null()),
        };

        let (_regulator_list, regulator_names) = match &self.regulator_names {
            Some(x) => {
                let list = to_c_str_array(x)?;
                let ptr = list.as_ptr();
                (Some(list), ptr)
            }
            None => (None, ptr::null()),
        };

        let prop_name = self
            .prop_name
            .as_ref()
            .map_or(ptr::null(), |p| p.as_char_ptr());

        let (supported_hw, supported_hw_count) = self
            .supported_hw
            .as_ref()
            .map_or((ptr::null(), 0), |hw| (hw.as_ptr(), hw.len() as u32));

        let (required_dev, required_dev_index) = self
            .required_dev
            .as_ref()
            .map_or((ptr::null_mut(), 0), |(dev, idx)| (dev.as_raw(), *idx));

        let mut config = bindings::dev_pm_opp_config {
            clk_names,
            config_clks: if T::HAS_CONFIG_CLKS {
                Some(Self::config_clks)
            } else {
                None
            },
            prop_name,
            regulator_names,
            config_regulators: if T::HAS_CONFIG_REGULATORS {
                Some(Self::config_regulators)
            } else {
                None
            },
            supported_hw,
            supported_hw_count,

            required_dev,
            required_dev_index,
        };

        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements. The OPP core guarantees not to access fields of [`Config`] after this call
        // and so we don't need to save a copy of them for future use.
        let ret = unsafe { bindings::dev_pm_opp_set_config(dev.as_raw(), &mut config) };
        if ret < 0 {
            Err(Error::from_errno(ret))
        } else {
            Ok(ConfigToken(ret))
        }
    }

    /// Config's clk callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn config_clks(
        dev: *mut bindings::device,
        opp_table: *mut bindings::opp_table,
        opp: *mut bindings::dev_pm_opp,
        _data: *mut kernel::ffi::c_void,
        scaling_down: bool,
    ) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: 'dev' is guaranteed by the C code to be valid.
            let dev = unsafe { Device::get_device(dev) };
            T::config_clks(
                &dev,
                // SAFETY: 'opp_table' is guaranteed by the C code to be valid.
                &unsafe { Table::from_raw_table(opp_table, &dev) },
                // SAFETY: 'opp' is guaranteed by the C code to be valid.
                unsafe { OPP::from_raw_opp(opp)? },
                scaling_down,
            )
            .map(|()| 0)
        })
    }

    /// Config's regulator callback.
    ///
    /// SAFETY: Called from C. Inputs must be valid pointers.
    extern "C" fn config_regulators(
        dev: *mut bindings::device,
        old_opp: *mut bindings::dev_pm_opp,
        new_opp: *mut bindings::dev_pm_opp,
        regulators: *mut *mut bindings::regulator,
        count: kernel::ffi::c_uint,
    ) -> kernel::ffi::c_int {
        from_result(|| {
            // SAFETY: 'dev' is guaranteed by the C code to be valid.
            let dev = unsafe { Device::get_device(dev) };
            T::config_regulators(
                &dev,
                // SAFETY: 'old_opp' is guaranteed by the C code to be valid.
                unsafe { OPP::from_raw_opp(old_opp)? },
                // SAFETY: 'new_opp' is guaranteed by the C code to be valid.
                unsafe { OPP::from_raw_opp(new_opp)? },
                regulators,
                count,
            )
            .map(|()| 0)
        })
    }
}

/// A reference-counted OPP table.
///
/// Rust abstraction for the C `struct opp_table`.
///
/// # Invariants
///
/// The pointer stored in `Self` is non-null and valid for the lifetime of the [`Table`].
///
/// Instances of this type are reference-counted.
///
/// ## Examples
///
/// The following example demonstrates how to get OPP [`Table`] for a [`Cpumask`] and set its
/// frequency.
///
/// ```
/// # #![cfg(CONFIG_OF)]
/// use kernel::clk::Hertz;
/// use kernel::cpumask::Cpumask;
/// use kernel::device::Device;
/// use kernel::error::Result;
/// use kernel::opp::Table;
/// use kernel::types::ARef;
///
/// fn get_table(dev: &ARef<Device>, mask: &mut Cpumask, freq: Hertz) -> Result<Table> {
///     let mut opp_table = Table::from_of_cpumask(dev, mask)?;
///
///     if opp_table.opp_count()? == 0 {
///         return Err(EINVAL);
///     }
///
///     pr_info!("Max transition latency is: {} ns\n", opp_table.max_transition_latency_ns());
///     pr_info!("Suspend frequency is: {:?}\n", opp_table.suspend_freq());
///
///     opp_table.set_rate(freq)?;
///     Ok(opp_table)
/// }
/// ```
pub struct Table {
    ptr: *mut bindings::opp_table,
    dev: ARef<Device>,
    #[allow(dead_code)]
    em: bool,
    #[allow(dead_code)]
    of: bool,
    cpus: Option<CpumaskVar>,
}

/// SAFETY: It is okay to send ownership of [`Table`] across thread boundaries.
unsafe impl Send for Table {}

/// SAFETY: It is okay to access [`Table`] through shared references from other threads because
/// we're either accessing properties that don't change or that are properly synchronised by C code.
unsafe impl Sync for Table {}

impl Table {
    /// Creates a new reference-counted [`Table`] from a raw pointer.
    ///
    /// # Safety
    ///
    /// Callers must ensure that `ptr` is valid and non-null.
    unsafe fn from_raw_table(ptr: *mut bindings::opp_table, dev: &ARef<Device>) -> Self {
        // SAFETY: By the safety requirements, ptr is valid and its refcount will be incremented.
        //
        // INVARIANT: The reference-count is decremented when [`Table`] goes out of scope.
        unsafe { bindings::dev_pm_opp_get_opp_table_ref(ptr) };

        Self {
            ptr,
            dev: dev.clone(),
            em: false,
            of: false,
            cpus: None,
        }
    }

    /// Creates a new reference-counted [`Table`] instance for a [`Device`].
    pub fn from_dev(dev: &Device) -> Result<Self> {
        // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
        // requirements.
        //
        // INVARIANT: The reference-count is incremented by the C code and is decremented when
        // [`Table`] goes out of scope.
        let ptr = from_err_ptr(unsafe { bindings::dev_pm_opp_get_opp_table(dev.as_raw()) })?;

        Ok(Self {
            ptr,
            dev: dev.into(),
            em: false,
            of: false,
            cpus: None,
        })
    }

    /// Creates a new reference-counted [`Table`] instance for a [`Device`] based on device tree
    /// entries.
    #[cfg(CONFIG_OF)]
    pub fn from_of(dev: &ARef<Device>, index: i32) -> Result<Self> {
        // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
        // requirements.
        //
        // INVARIANT: The reference-count is incremented by the C code and is decremented when
        // [`Table`] goes out of scope.
        to_result(unsafe { bindings::dev_pm_opp_of_add_table_indexed(dev.as_raw(), index) })?;

        // Get the newly created [`Table`].
        let mut table = Self::from_dev(dev)?;
        table.of = true;

        Ok(table)
    }

    /// Remove device tree based [`Table`].
    #[cfg(CONFIG_OF)]
    #[inline]
    fn remove_of(&self) {
        // SAFETY: The requirements are satisfied by the existence of the [`Device`] and its safety
        // requirements. We took the reference from [`from_of`] earlier, it is safe to drop the
        // same now.
        unsafe { bindings::dev_pm_opp_of_remove_table(self.dev.as_raw()) };
    }

    /// Creates a new reference-counted [`Table`] instance for a [`Cpumask`] based on device tree
    /// entries.
    #[cfg(CONFIG_OF)]
    pub fn from_of_cpumask(dev: &Device, cpumask: &mut Cpumask) -> Result<Self> {
        // SAFETY: The cpumask is valid and the returned pointer will be owned by the [`Table`]
        // instance.
        //
        // INVARIANT: The reference-count is incremented by the C code and is decremented when
        // [`Table`] goes out of scope.
        to_result(unsafe { bindings::dev_pm_opp_of_cpumask_add_table(cpumask.as_raw()) })?;

        // Fetch the newly created table.
        let mut table = Self::from_dev(dev)?;
        table.cpus = Some(CpumaskVar::try_clone(cpumask)?);

        Ok(table)
    }

    /// Remove device tree based [`Table`] for a [`Cpumask`].
    #[cfg(CONFIG_OF)]
    #[inline]
    fn remove_of_cpumask(&self, cpumask: &Cpumask) {
        // SAFETY: The cpumask is valid and we took the reference from [`from_of_cpumask`] earlier,
        // it is safe to drop the same now.
        unsafe { bindings::dev_pm_opp_of_cpumask_remove_table(cpumask.as_raw()) };
    }

    /// Returns the number of [`OPP`]s in the [`Table`].
    pub fn opp_count(&self) -> Result<u32> {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        let ret = unsafe { bindings::dev_pm_opp_get_opp_count(self.dev.as_raw()) };
        if ret < 0 {
            Err(Error::from_errno(ret))
        } else {
            Ok(ret as u32)
        }
    }

    /// Returns max clock latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
    #[inline]
    pub fn max_clock_latency_ns(&self) -> usize {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        unsafe { bindings::dev_pm_opp_get_max_clock_latency(self.dev.as_raw()) }
    }

    /// Returns max volt latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
    #[inline]
    pub fn max_volt_latency_ns(&self) -> usize {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        unsafe { bindings::dev_pm_opp_get_max_volt_latency(self.dev.as_raw()) }
    }

    /// Returns max transition latency (in nanoseconds) of the [`OPP`]s in the [`Table`].
    #[inline]
    pub fn max_transition_latency_ns(&self) -> usize {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        unsafe { bindings::dev_pm_opp_get_max_transition_latency(self.dev.as_raw()) }
    }

    /// Returns the suspend [`OPP`]'s frequency.
    #[inline]
    pub fn suspend_freq(&self) -> Hertz {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        Hertz(unsafe { bindings::dev_pm_opp_get_suspend_opp_freq(self.dev.as_raw()) })
    }

    /// Synchronizes regulators used by the [`Table`].
    #[inline]
    pub fn sync_regulators(&self) -> Result {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        to_result(unsafe { bindings::dev_pm_opp_sync_regulators(self.dev.as_raw()) })
    }

    /// Gets sharing CPUs.
    #[inline]
    pub fn sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        to_result(unsafe { bindings::dev_pm_opp_get_sharing_cpus(dev.as_raw(), cpumask.as_raw()) })
    }

    /// Sets sharing CPUs.
    pub fn set_sharing_cpus(&mut self, cpumask: &mut Cpumask) -> Result {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        to_result(unsafe {
            bindings::dev_pm_opp_set_sharing_cpus(self.dev.as_raw(), cpumask.as_raw())
        })?;

        if let Some(mask) = self.cpus.as_mut() {
            // Update the cpumask as this will be used while removing the table.
            cpumask.copy(mask);
        }

        Ok(())
    }

    /// Gets sharing CPUs from device tree.
    #[cfg(CONFIG_OF)]
    #[inline]
    pub fn of_sharing_cpus(dev: &Device, cpumask: &mut Cpumask) -> Result {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        to_result(unsafe {
            bindings::dev_pm_opp_of_get_sharing_cpus(dev.as_raw(), cpumask.as_raw())
        })
    }

    /// Updates the voltage value for an [`OPP`].
    #[inline]
    pub fn adjust_voltage(
        &self,
        freq: Hertz,
        volt: MicroVolt,
        volt_min: MicroVolt,
        volt_max: MicroVolt,
    ) -> Result {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        to_result(unsafe {
            bindings::dev_pm_opp_adjust_voltage(
                self.dev.as_raw(),
                freq.into(),
                volt.into(),
                volt_min.into(),
                volt_max.into(),
            )
        })
    }

    /// Creates [`FreqTable`] from [`Table`].
    #[cfg(CONFIG_CPU_FREQ)]
    #[inline]
    pub fn cpufreq_table(&mut self) -> Result<FreqTable> {
        FreqTable::new(self)
    }

    /// Configures device with [`OPP`] matching the frequency value.
    #[inline]
    pub fn set_rate(&self, freq: Hertz) -> Result {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        to_result(unsafe { bindings::dev_pm_opp_set_rate(self.dev.as_raw(), freq.into()) })
    }

    /// Configures device with [`OPP`].
    #[inline]
    pub fn set_opp(&self, opp: &OPP) -> Result {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        to_result(unsafe { bindings::dev_pm_opp_set_opp(self.dev.as_raw(), opp.as_raw()) })
    }

    /// Finds [`OPP`] based on frequency.
    pub fn opp_from_freq(
        &self,
        freq: Hertz,
        available: Option<bool>,
        index: Option<u32>,
        stype: SearchType,
    ) -> Result<ARef<OPP>> {
        let raw_dev = self.dev.as_raw();
        let index = index.unwrap_or(0);
        let mut rate = freq.into();

        let ptr = from_err_ptr(match stype {
            SearchType::Exact => {
                if let Some(available) = available {
                    // SAFETY: The requirements are satisfied by the existence of [`Device`] and
                    // its safety requirements. The returned pointer will be owned by the new
                    // [`OPP`] instance.
                    unsafe {
                        bindings::dev_pm_opp_find_freq_exact_indexed(
                            raw_dev, rate, index, available,
                        )
                    }
                } else {
                    return Err(EINVAL);
                }
            }

            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
            SearchType::Ceil => unsafe {
                bindings::dev_pm_opp_find_freq_ceil_indexed(raw_dev, &mut rate, index)
            },

            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
            SearchType::Floor => unsafe {
                bindings::dev_pm_opp_find_freq_floor_indexed(raw_dev, &mut rate, index)
            },
        })?;

        // SAFETY: The `ptr` is guaranteed by the C code to be valid.
        unsafe { OPP::from_raw_opp_owned(ptr) }
    }

    /// Finds [`OPP`] based on level.
    pub fn opp_from_level(&self, mut level: u32, stype: SearchType) -> Result<ARef<OPP>> {
        let raw_dev = self.dev.as_raw();

        let ptr = from_err_ptr(match stype {
            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
            SearchType::Exact => unsafe { bindings::dev_pm_opp_find_level_exact(raw_dev, level) },

            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
            SearchType::Ceil => unsafe {
                bindings::dev_pm_opp_find_level_ceil(raw_dev, &mut level)
            },

            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
            SearchType::Floor => unsafe {
                bindings::dev_pm_opp_find_level_floor(raw_dev, &mut level)
            },
        })?;

        // SAFETY: The `ptr` is guaranteed by the C code to be valid.
        unsafe { OPP::from_raw_opp_owned(ptr) }
    }

    /// Finds [`OPP`] based on bandwidth.
    pub fn opp_from_bw(&self, mut bw: u32, index: i32, stype: SearchType) -> Result<ARef<OPP>> {
        let raw_dev = self.dev.as_raw();

        let ptr = from_err_ptr(match stype {
            // The OPP core doesn't support this yet.
            SearchType::Exact => return Err(EINVAL),

            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
            SearchType::Ceil => unsafe {
                bindings::dev_pm_opp_find_bw_ceil(raw_dev, &mut bw, index)
            },

            // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
            // requirements. The returned pointer will be owned by the new [`OPP`] instance.
            SearchType::Floor => unsafe {
                bindings::dev_pm_opp_find_bw_floor(raw_dev, &mut bw, index)
            },
        })?;

        // SAFETY: The `ptr` is guaranteed by the C code to be valid.
        unsafe { OPP::from_raw_opp_owned(ptr) }
    }

    /// Enables the [`OPP`].
    #[inline]
    pub fn enable_opp(&self, freq: Hertz) -> Result {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        to_result(unsafe { bindings::dev_pm_opp_enable(self.dev.as_raw(), freq.into()) })
    }

    /// Disables the [`OPP`].
    #[inline]
    pub fn disable_opp(&self, freq: Hertz) -> Result {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        to_result(unsafe { bindings::dev_pm_opp_disable(self.dev.as_raw(), freq.into()) })
    }

    /// Registers with the Energy model.
    #[cfg(CONFIG_OF)]
    pub fn of_register_em(&mut self, cpumask: &mut Cpumask) -> Result {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements.
        to_result(unsafe {
            bindings::dev_pm_opp_of_register_em(self.dev.as_raw(), cpumask.as_raw())
        })?;

        self.em = true;
        Ok(())
    }

    /// Unregisters with the Energy model.
    #[cfg(all(CONFIG_OF, CONFIG_ENERGY_MODEL))]
    #[inline]
    fn of_unregister_em(&self) {
        // SAFETY: The requirements are satisfied by the existence of [`Device`] and its safety
        // requirements. We registered with the EM framework earlier, it is safe to unregister now.
        unsafe { bindings::em_dev_unregister_perf_domain(self.dev.as_raw()) };
    }
}

impl Drop for Table {
    fn drop(&mut self) {
        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe
        // to relinquish it now.
        unsafe { bindings::dev_pm_opp_put_opp_table(self.ptr) };

        #[cfg(CONFIG_OF)]
        {
            #[cfg(CONFIG_ENERGY_MODEL)]
            if self.em {
                self.of_unregister_em();
            }

            if self.of {
                self.remove_of();
            } else if let Some(cpumask) = self.cpus.take() {
                self.remove_of_cpumask(&cpumask);
            }
        }
    }
}

/// A reference-counted Operating performance point (OPP).
///
/// Rust abstraction for the C `struct dev_pm_opp`.
///
/// # Invariants
///
/// The pointer stored in `Self` is non-null and valid for the lifetime of the [`OPP`].
///
/// Instances of this type are reference-counted. The reference count is incremented by the
/// `dev_pm_opp_get` function and decremented by `dev_pm_opp_put`. The Rust type `ARef<OPP>`
/// represents a pointer that owns a reference count on the [`OPP`].
///
/// A reference to the [`OPP`], &[`OPP`], isn't refcounted by the Rust code.
///
/// ## Examples
///
/// The following example demonstrates how to get [`OPP`] corresponding to a frequency value and
/// configure the device with it.
///
/// ```
/// use kernel::clk::Hertz;
/// use kernel::error::Result;
/// use kernel::opp::{SearchType, Table};
///
/// fn configure_opp(table: &Table, freq: Hertz) -> Result {
///     let opp = table.opp_from_freq(freq, Some(true), None, SearchType::Exact)?;
///
///     if opp.freq(None) != freq {
///         return Err(EINVAL);
///     }
///
///     table.set_opp(&opp)
/// }
/// ```
#[repr(transparent)]
pub struct OPP(Opaque<bindings::dev_pm_opp>);

/// SAFETY: It is okay to send the ownership of [`OPP`] across thread boundaries.
unsafe impl Send for OPP {}

/// SAFETY: It is okay to access [`OPP`] through shared references from other threads because we're
/// either accessing properties that don't change or that are properly synchronised by C code.
unsafe impl Sync for OPP {}

/// SAFETY: The type invariants guarantee that [`OPP`] is always refcounted.
unsafe impl AlwaysRefCounted for OPP {
    fn inc_ref(&self) {
        // SAFETY: The existence of a shared reference means that the refcount is nonzero.
        unsafe { bindings::dev_pm_opp_get(self.0.get()) };
    }

    unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
        // SAFETY: The safety requirements guarantee that the refcount is nonzero.
        unsafe { bindings::dev_pm_opp_put(obj.cast().as_ptr()) }
    }
}

impl OPP {
    /// Creates an owned reference to a [`OPP`] from a valid pointer.
    ///
    /// The refcount is incremented by the C code and will be decremented by `dec_ref` when the
    /// [`ARef`] object is dropped.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `ptr` is valid and the refcount of the [`OPP`] is incremented.
    /// The caller must also ensure that it doesn't explicitly drop the refcount of the [`OPP`], as
    /// the returned [`ARef`] object takes over the refcount increment on the underlying object and
    /// the same will be dropped along with it.
    pub unsafe fn from_raw_opp_owned(ptr: *mut bindings::dev_pm_opp) -> Result<ARef<Self>> {
        let ptr = ptr::NonNull::new(ptr).ok_or(ENODEV)?;

        // SAFETY: The safety requirements guarantee the validity of the pointer.
        //
        // INVARIANT: The reference-count is decremented when [`OPP`] goes out of scope.
        Ok(unsafe { ARef::from_raw(ptr.cast()) })
    }

    /// Creates a reference to a [`OPP`] from a valid pointer.
    ///
    /// The refcount is not updated by the Rust API unless the returned reference is converted to
    /// an [`ARef`] object.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `ptr` is valid and remains valid for the duration of `'a`.
    #[inline]
    pub unsafe fn from_raw_opp<'a>(ptr: *mut bindings::dev_pm_opp) -> Result<&'a Self> {
        // SAFETY: The caller guarantees that the pointer is not dangling and stays valid for the
        // duration of 'a. The cast is okay because [`OPP`] is `repr(transparent)`.
        Ok(unsafe { &*ptr.cast() })
    }

    #[inline]
    fn as_raw(&self) -> *mut bindings::dev_pm_opp {
        self.0.get()
    }

    /// Returns the frequency of an [`OPP`].
    pub fn freq(&self, index: Option<u32>) -> Hertz {
        let index = index.unwrap_or(0);

        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
        // use it.
        Hertz(unsafe { bindings::dev_pm_opp_get_freq_indexed(self.as_raw(), index) })
    }

    /// Returns the voltage of an [`OPP`].
    #[inline]
    pub fn voltage(&self) -> MicroVolt {
        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
        // use it.
        MicroVolt(unsafe { bindings::dev_pm_opp_get_voltage(self.as_raw()) })
    }

    /// Returns the level of an [`OPP`].
    #[inline]
    pub fn level(&self) -> u32 {
        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
        // use it.
        unsafe { bindings::dev_pm_opp_get_level(self.as_raw()) }
    }

    /// Returns the power of an [`OPP`].
    #[inline]
    pub fn power(&self) -> MicroWatt {
        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
        // use it.
        MicroWatt(unsafe { bindings::dev_pm_opp_get_power(self.as_raw()) })
    }

    /// Returns the required pstate of an [`OPP`].
    #[inline]
    pub fn required_pstate(&self, index: u32) -> u32 {
        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
        // use it.
        unsafe { bindings::dev_pm_opp_get_required_pstate(self.as_raw(), index) }
    }

    /// Returns true if the [`OPP`] is turbo.
    #[inline]
    pub fn is_turbo(&self) -> bool {
        // SAFETY: By the type invariants, we know that `self` owns a reference, so it is safe to
        // use it.
        unsafe { bindings::dev_pm_opp_is_turbo(self.as_raw()) }
    }
}